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ABSTRACT	  
 

Rangelands cover approximately 50% of California and have considerable potential to mitigate climate 
change. Several management strategies offer opportunities to build soil carbon and reduce greenhouse gas 
emissions. Grazing management can increase soil carbon, but significant uncertainties remain and best 
management practices are unknown. Long-term, well-replicated studies are urgently needed to explore the 
potential of grazing management for climate change mitigation. Organic amendments, particularly 
compost, can enhance biomass and sequester carbon on grasslands while reducing emissions from the 
waste sector. This strategy shows significant potential but requires additional research, particularly in arid 
rangelands. High-efficiency synthetic fertilizer use, plant community management, fire management, and 
irrigation can also influence soil carbon; however, these strategies could be challenging to scale up over 
large areas, and their net greenhouse gas impacts are uncertain. Remote sensing, biogeochemical 
modeling, and life-cycle assessments should be leveraged to identify and implement mitigation strategies. 
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INTRODUCTION	  AND	  OBJECTIVES	  

Rangelands cover more than 22 million hectares (ha) in California, or 40–50% of the state’s land area 
(Brown et al. 2004). Globally, rangelands are critical to the carbon (C) cycle (Ogle, Conant, and Paustian 
2004), storing about one-third of the terrestrial soil C pool (Jobbagy and Jackson 2000) over an area of 
approximately 3.3 billion ha. The large extent of rangelands, coupled with their propensity to store C in 
soils, suggests considerable C sequestration potential and thus opportunities for climate change mitigation. 
Numerous ecosystem services can be protected or enhanced by conserving or improving rangeland soils 
(Havstad et al. 2007). Management practices that conserve and enhance C storage in rangelands as well as 
prevent losses to the atmosphere can help mitigate climate change while enhancing sustainability under 
future climate scenarios.  
 
Carbon cycling and greenhouse gas (GHG) fluxes are highly sensitive to climate in California’s 
rangelands (Ma, Baldocchi, Xu, and Hehn 2007; Jackson et al. 2007; Chou et al. 2008; Schwalm et al. 
2012; Grant, Baldocchi, and Ma 2012). In the western United States, climate change is likely to occur 
even if substantial reductions to GHG emissions are achieved (Solomon et al. 2007). Air temperatures in 
the southwestern United States are predicted to rise 1.5–4.5 °C by 2099 (Cayan et al. 2008). Impacts on 
annual precipitation and precipitation patterns remain uncertain, although recent work suggests that a 
decline in mean annual rainfall is likely (Seager and Vecchi 2010). In general, variability in precipitation 
is predicted to increase, as is the frequency and intensity of extreme precipitation events (Solomon et al. 
2007; Kerr 2008). Such changes in climate are expected to have particularly strong impacts on arid and 
semi-arid ecosystems of the western United States (Archer and Predick 2008; Backlund, Janetos, and 
Schimel 2008), with implications for water regimes, fire risk, soil C storage, and GHG emissions. 
Grasslands and shrublands are likely to expand and may experience shifts in plant community 
composition due to climate change (Pan et al. 1998), which, in turn, are likely to feed back directly and 
indirectly on C and GHG dynamics (Zavaleta and Kettley 2006). Climate change, coupled with land use 
patterns, is creating novel ecosystems that may require new and innovative management approaches.  
 
Although rangelands store a regionally important pool of C, they are a relatively small contributor to 
California’s GHG emissions; the greatest emissions associated with rangelands likely come from 
livestock enteric fermentation and manure management (Pitesky, Stackhouse, and Mitloehner 2009). 
These emissions are included in inventories as part of the agricultural sector, which contributes an 
estimated 7% of GHG emissions in California (32.4 million t CO2-eq1; CARB 2013). The emissions from 
livestock enteric fermentation and manure management make up 60% of California’s agricultural 
emissions (CARB 2013); although not directly from rangelands, these livestock-related emissions could 
perhaps be mitigated by rangeland management. The primary focus of this report, however, is C storage 
and GHG dynamics on rangelands. 
 
Understanding the C and GHG dynamics on rangelands under current and future conditions is necessary 
to identify gaps in knowledge and opportunities for management-based climate change mitigation. The 
objective of this report is to synthesize what is known about GHG mitigation through the management of 
rangeland systems in California. California’s Mediterranean climate, with wet winters and extended 
summer droughts, differentiates many of its rangelands from those in other climates. Therefore, this study 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The CO2-equivalents unit (CO2-eq) is used for reported values that consider the combined global warming 
potential (GWP) from CO2, methane (CH4), and nitrous oxide (N2O). Carbon dioxide has a GWP of 1 (1 g CO2-eq = 
1 g CO2). To convert C from CO2 into CO2-eq, multiply by 3.67 (44.01 g CO2 /12.01 g C). To convert C from CH4 
into CO2-eq, multiply by 1.33 (16.04 g CH4/12.01 g C in) and then by the GWP (1 g CH4 = 25 g CO2-eq on a 100 y 
timeframe; Solomon et al. 2007). To convert N from N2O into CO2-eq, multiply by 1.57 (44.01 N2O/28.01 g N) and 
then by the GWP (1 g N2O = 298 g CO2-eq on a 100-year timeframe; Solomon et al. 2007). Note that 1 Mg = 
1,000,000 g = 1 t. 
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reviews the body of research on global rangelands but focuses on California and studies from regions 
with similar climate regimes. It concludes with a summary of key gaps in knowledge and future 
opportunities for climate change mitigation in rangeland systems. 

RANGELAND	  DEFINITIONS,	  EXTENT,	  AND	  SIGNIFICANCE	  	  

This study defines rangeland broadly as land on which plant cover (climax, sub-climax, or potential) is 
composed principally of grasses, grass-like plants, forbs, or shrubs suitable for grazing and browsing, 
including native and introduced plant species (USDA 2009). Grassland is rangeland where the plant 
cover is primarily grasses and forbs. Pastureland is land managed primarily for the production of non-
native forage plants, consisting of a single species, grass mixture, or grass-legume mixture; pasturelands 
are often distinguished from rangelands by the intensity of management, particularly chemical 
applications (USDA 2009). In this study, California rangeland includes grasslands, oak woodlands, 
chaparral, and some forested areas, wetlands, and deserts with the potential to be used for grazing. The 
drained wetlands and peatland pastures of the Sacramento–San Joaquin Delta (originally a 140,000 ha 
tidal marsh) also contain land managed as rangelands. 
 
California’s diverse rangelands include many different plant communities and climate conditions, which 
impact soil C stocks and GHG fluxes. Thus, different rangeland types are likely to respond differently to 
management approaches. Estimates of total California rangeland vary among classification systems 
(Brown et al. 2004). An estimate of 25.5 million ha includes Mediterranean, desert, and 
intermountain/high-elevation cover types (Figure 1) (UCSB 1998; Mayer and Laudenslayer 1988; UCD 
2011; Brown et al. 2004). This figure includes 11.9 million ha of Mediterranean rangelands (23% 
grasslands, 27% woodlands, and 50% shrublands, including chaparral and coastal scrub), 9.8 million ha 
of desert shrublands (primarily desert scrub), and 3.2 million ha of intermountain rangelands (49% 
dominated by juniper, 50% sagebrush, and other shrublands). A smaller estimate of rangeland extent 
(16.7 million ha) was calculated by the 2007 USDA ERS Major Land Uses survey and included only 
grassland pasture and range (11.1 million ha, including shrublands), cropland used as pasture, and grazed 
forest land (5.2 million ha of oak woodland and other wooded ecosystems with a grass understory; 
Nickerson, Ebel, Borchers, and Carriazo 2011).  
 
Figure	  1.	  Spatial	  Extent	  of	  Mediterranean,	  Desert,	  and	  Intermountain	  Rangelands	  in	  California	  and	  the	  
Dominant	  Vegetation	  Type	  

 
 
Sources:	  Brown	  et	  al.	  (2004),	  UCD	  (2011),	  Mayer	  and	  Laudenslayer	  (1998).	  
Note:	  Grasslands	  are	  predominantly	  annual	  grasses;	  woodlands	  primarily	  consist	  of	  oaks	  with	  an	  annual	  grass	  understory.	  
Rangelands	  with	  different	  cover	  types	  have	  different	  soil	  C	  stocks	  and	  GHG	  fluxes	  and	  are	  likely	  to	  respond	  differentially	  to	  
management	  approaches.	  
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In California, non-native annual grasslands invaded significant regions of the coast and Central Valley in 
the 1800s and replaced both native perennial-dominated grasslands (Biswell 1956; D’Antonio et al. 2007) 
and shrublands (Wolkovich et al. 2010; Engelberg et al. 2013). This invasion has been extensive; less 
than 2% of California’s Mediterranean grasslands are currently dominated by native perennial grasses 
(UCD 2011). Perennial grasses typically have comparatively deeper root systems, denser aboveground 
biomass, and higher root production—traits that enable perennials to survive the summer drought as well 
as to potentially increase soil C (Koteen, Baldocchi, and Harte 2011), although not in all cases 
(Wolkovich et al. 2010). Annual grass invasions in California’s shrublands have been linked to many 
types of disturbances (Eliason and Allen 1997; Fleming, Diffendorfer, and Zedler 2009). Natural 
disturbances including fire and grazing often lead to succession by native species, whereas mechanical 
disturbances such as disking, plowing, or cultivation tend to promote the establishment of non-native 
species (Engelberg et al. 2013). In California coastal scrub, annual grass invasions have resulted in 
increased soil C storage (Wolkovich et al. 2010); this effect differs from the effects of grass invasions in 
the Great Basin, possibly due to different fire regimes (Bradley, Houghton, Mustard, and Hamburg 2006; 
Prater, Obrist, Arnone, and DeLucia 2006).  
 
Woody encroachment into grasslands, documented in both northern and southern California (DeSimone 
and Zedler 2001), is part of a global phenomenon that has been attributed to changes in air temperature, 
precipitation patterns, elevated CO2, and management (grazing, fire suppression, herbivore elimination) 
(Archer, Schimel, and Holland 1995). In California, the mechanisms leading to coastal scrub expansion 
are dependent on local conditions, including above-average rainfall, gopher activity, grazing, and lack of 
fire (DeSimone and Zedler 2001). Woody expansion into grasslands tends to increase aboveground C 
pools but has variable impacts on belowground C (Knapp et al. 2008; Asner et al. 2004), decreasing soil 
C storage in some ecosystems (Jackson et al. 2002). 
 
Oak woodlands are of both ecological and cultural importance to California due to the presence of several 
endemic oaks, Quercus douglasii and Quercus lobata Ne´e (blue and valley oak, respectively). Oak 
woodlands experience prolonged summer drought annually, which they mitigate through groundwater 
uptake (Miller et al. 2010). Compared with open grasslands, California oak woodlands have lower 
albedos, lower radiative surface temperatures, higher net radiation, greater sensible heat fluxes, and 
greater evaporation, all of which impact vegetation and productivity (Baldocchi, Xu, and Kiang 2004). 
Oak woodlands have been threatened by clearing, sudden oak death, and climate change (Kueppers et al. 
2005). Removal of oaks impacts ecosystem C storage, because soil pools of both C and nitrogen (N), a 
commonly limiting nutrient, tend to be greater under oak canopies than in adjacent grassland (Dahlgren, 
Singer, and Huang 1997).  

RANGELAND	  SOIL	  CARBON	  AND	  GHG	  FLUXES:	  OVERVIEW	  

Rangeland soils store significant C in soil organic matter and act as both a source and a sink of 
greenhouse gases (Figure 2). Soil C and GHG fluxes vary widely in space and time, driven by a 
combination of climate, soil characteristics, and management practices (Silver, Ryals, and Eviner 2010; 
Conant, Paustian, and Elliott 2001; Soussana, Tallec, and Blanfort 2010; Paustian, Collins, and Paul 
1997). Research documenting soil C pools, net ecosystem exchange, and GHG fluxes of rangeland 
ecosystems—especially that focusing on California—is overviewed here. This review is intended to 
highlight what is known about the potential for rangelands to store C and to mitigate GHG fluxes under 
current and changing climate and environmental conditions (e.g., rainfall, temperature, CO2 fertilization, 
N deposition). Such information is required to identify mitigation opportunities on available landscapes, 
to identify knowledge gaps, and to inform research priorities. The specific impacts of management 
practices that can alter soil C and GHG fluxes are reviewed in the following section. 
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Figure	  2.	  Schematic	  of	  the	  Major	  Pools	  of	  Carbon	  and	  Nitrogen	  Showing	  Major	  Fluxes	  of	  Greenhouse	  
Gases	  Associated	  with	  California’s	  Rangelands	  	  
 

 
Note:	  Flux	  arrows	  are	  not	  quantitative.	  Typically	  the	  largest	  CH4	  and	  N2O	  fluxes	  in	  rangelands	  are	  derived	  from	  enteric	  
fermentation.	  Soils	  are	  the	  largest	  C	  and	  N	  pool	  in	  rangelands,	  and	  many	  have	  considerable	  additional	  C	  storage	  potential.	  
 

Soil	  Carbon	  Pools,	  Soil	  CO2	  Fluxes,	  and	  Net	  Ecosystem	  Exchange	  

Rangelands store approximately 30% of the global soil organic C pool (Schuman, Janzen, and Herrick 
2002; Follett and Reed 2010; Scurlock and Hall 1998; Jobbagy and Jackson 2000). Soil texture, 
mineralogy, and nutrient content as well as plant community composition, climate, and management are 
often used to predict patterns in soil C storage at a range of spatial and temporal scales (Parton, Schimel, 
Cole, and Ojima 1987; Burke et al. 1989; Conant, Paustian, and Elliott 2001; Silver, Ryals, and Eviner 
2010). Carbon is acquired directly by rangeland plants through assimilation of CO2 via photosynthesis and 
indirectly via livestock manure deposition. Carbon can be lost through plant and microbial respiration, 
erosion, burning, leaching, harvesting, and grazing. The magnitude and direction of CO2 effluxes over 
annual and interannual timeframes are affected by vegetation type, climate (Hunt et al. 2004; Ciais et al. 
2005; Gilmanov et al. 2007; Soussana et al. 2007), and management (reviewed by Sousanna, Tallec, and 
Blanfort 2010). Carbon sequestration occurs when net C gains exceed losses over a specific timeframe.  
 
Relatively few studies have reported measurements of soil C in rangeland ecosystems. In a meta-analysis 
of soil C data from California’s annual grasslands and oak woodlands, 15 studies with a total of 48 unique 
soil profiles were identified (Silver, Ryals, and Eviner 2010). Soil C content (0–50 cm depth) spanned 28 
to 300 t C ha-1, with a mean of 90 t C ha-1 (excluding one outlier). Soil texture can be a particularly strong 
predictor of soil C pools (Schimel et al. 1994); however, soil C storage was only weakly correlated with 
clay content (Silver, Ryals, and Eviner 2010). Thus, differences in management practices were suggested 
as the likely driver for the observed range (Silver, Ryals, and Eviner 2010). For perennial grasses and 
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shrubs, the age of the vegetation may also affect C storage. For example, soil C concentration declined 
significantly with shrub stand age in subsurface (30–40 cm) chaparral soils; two two- to three-year-old 
stands had mean soil C concentrations of about 0.7%, whereas two older stands had 0.3–0.5% C 
(Vourlitis, Zorba, Pasquini, and Mustard 2007). In a regional sampling survey of grasslands in Marin and 
Sonoma counties, soil C pools ranged from 100 to 300 t C ha-1 in the top meter of soil (Silver et al. in 
prep). On pasture-based dairies in Marin and Sonoma counties, Owen and Silver (in prep) measured 
higher soil C content ranging from 60 to 222 t C ha-1 in the top 50 cm. The grazed drained peatlands in 
the Bay Delta contain significantly more C than other California rangelands, with recent measurements of 
approximately 486 t C ha-1 in the top 60 cm (Hatala, Detto, and Baldocchi 2012). However, these soils 
have been rapidly losing C since the 19th century (see below; Hatala, Detto, and Baldocchi 2012; Deveral 
and Leighton 2010). Relative to other rangeland C stocks, mean California rangeland C stocks (50 t C ha-1 
in the top 20 cm; Silver, Ryals, and Eviner 2010) fell toward the middle of the range measured from 500 
sites in the Great Plains (10-90 t C ha-1 in the top 20 cm; Burke et al. 1989). Few studies have compared 
arid and semi-arid systems, but one such study in Spain found that arid rangelands had significantly less 
soil C than nearby semi-arid rangelands (Ruiz Sinoga, Pariente, Diaz, and Martinez Murillo 2012).  
  
In addition to organic C, many arid and semi-arid soils in southern California are known to contain 
significant amounts of inorganic C in carbonates (Machette 1985; Monger and Martinez-Rios 2001). 
Carbonates accumulate in semi-arid and arid soils as a byproduct of weathering under very dry conditions 
(Monger and Martinez-Rios 2001), and these soils can also retain relatively more inorganic C from parent 
material (Machette 1985; Trueman et al. 2009). Inorganic C can be lost through wind and water erosion, a 
process accelerated with surface exposure (Emmerich 2003; Serna-Perez, Monger, Herrick, and Murray 
2006; Tamir et al. 2011). Management can influence inorganic C stocks (Monger and Martinez-Rios 
2001) by affecting the concentrations of Ca or HCO3

- in soil moisture, the precursors to carbonate 
formation. A study on shortgrass steppe in Colorado revealed that a heavily grazed site had significantly 
more inorganic C than a nongrazed site (by 16.3 t C ha-1 within the top 90 cm; Reeder, Schuman, Morgan, 
and LeCain 2004). More research is needed to quantify the amounts of C stored in inorganic pools in 
California soils.  

Net	  Ecosystem	  Exchange	  

Gains and losses of C from rangeland ecosystems can be quantified by measuring the net CO2 flux across 
the ecosystem-atmosphere boundary, commonly termed the net ecosystem exchange (NEE). Net 
ecosystem exchange is the difference between gross primary production and ecosystem respiration 
(including autotrophic and heterotrophic respiration). It can be measured with eddy flux techniques that 
make continuous measurements over large areas (Baldocchi 2008). The annual grasslands and woodlands 
of California are underrepresented by eddy flux networks (Baldocchi 2008). However, flux towers have 
been installed over other rangeland systems as part of the AmeriFlux network (http://ameriflux.lbl.gov) 
and international efforts. The MexFlux network includes towers over semi-arid shrublands and grasslands, 
oak woodland, and arid rangeland (Vargas and Yepez 2011). 
 
Studies of NEE in California include research conducted over an oak savanna and neighboring grassland 
in the north central region (Xu and Baldocchi 2003, 2004; Xu, Baldocchi, and Tang 2004; Baldocchi, 
Tang, and Xu 2006; Ma, Baldocchi, Xu, and Hehn 2007; Ma et al. 2012), research along an elevation 
gradient in the southeastern region (Goulden et al. 2012; Fellows and Goulden 2013), measurements over 
a southern California chaparral ecosystem (Claudio et al. 2006; Luo et al. 2007), and research over a 
peatland pasture in the Sacramento-San Joaquin Delta (Nieveen, Campbell, Schipper, and Blair 2005; 
Rogiers et al. 2008; Teh et al. 2011; Hatala, Detto, and Baldocchi 2012). With the exception of the 
peatland pasture, rangelands were CO2 sources and sinks of similar magnitude (by approximately ±7 t 
CO2-eq ha-1 y-1, depending on the year). Studies generally have not accounted for differences in soil 
characteristics or management, both of which can significantly impact C storage and loss. 
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Net ecosystem exchange in California rangelands, and in rangelands globally, is highly sensitive to 
climate variability both within and across years, and particularly sensitive to patterns in rainfall 
seasonality (Xu and Baldocchi 2004; Soussana et al. 2007; Gilmanov et al. 2010; Ma, Baldocchi, Xu, and 
Hehn 2007; Ma et al. 2012). During a once-per-century drought year (2002), the strength of the C sink of 
a southern California chaparral decreased significantly to -0.7 t CO2-eq ha-1 y-1 from a five-year range of -
3.7 to -6.2 t CO2-eq ha-1 y-1, and the site became a large C source in the following year, emitting 7.3 t 
CO2-eq ha-1 y-1. Grasslands tend to be less resistant to drought than shrublands and woodlands due to 
shallower rooting systems (Xu and Baldocchi 2003; Ma, Baldocchi, Xu, and Hehn 2007). Oak savanna 
was a net C sink ranging from -2.2 to -5.9 t CO2-eq ha-1 y-1 over a six-year study period, while a 
neighboring grassland ranged from a net sink of -3.3 t CO2-eq ha-1 y-1 to a net source of 5.1 t CO2-eq ha-1 
y-1 (Ma, Baldocchi, Xu, and Hehn 2007). Isolated summer rainstorms led to pulses in soil respiration, 
increasing the source term (Xu, Baldocchi, and Tang 2004; Baldocchi, Tang, and Xu 2006; Chou et al. 
2008). In a rainfall manipulation experiment, water added early and late in the water year (i.e., September 
and May–July) increased soil C losses from microbial respiration and associated decomposition of C 
stored in soils (Chou et al. 2008), whereas increased rainfall during the rainy season had little effect on C 
pools and fluxes.  
 
Globally, rangelands tend to act as C sinks but become sources following major disturbances such as 
overgrazing, mowing, fire, or extensive drought (Gilmanov et al. 2007; Zhang et al. 2010; Svejcar et al. 
2008). For example, European grasslands went from a net sink of -23.5 CO2-eq ha-1 y-1 to a net source of 
5.9 CO2-eq ha-1 y-1 with drought events; organic-rich soils also tended to experience net emissions 
(Gilmanov et al. 2007). Compared with rangelands in the eastern United States, western rangelands 
appeared to be particularly sensitive to drought (Zhang et al. 2011), potentially due to their drier 
background conditions. Drought can lead to widespread tree mortality and changes in plant community 
composition, both of which can affect C emissions (Claudio et al. 2006; Fellows and Goulden 2013). 
Photodegradation of litter following the resumption of rain after long dry periods can be an important 
source of ecosystem respiration (Ma et al. 2012). Temperature is also an important driver of ecosystem C 
fluxes, because both gross primary production and ecosystem respiration are sensitive to temperature 
(Yuan et al. 2011). Other potential predictors of rangeland C fluxes include temperatures before oak leaf-
out (cool temperatures delay leaf-out and shorten the growing season), cloudiness (clouds increase diffuse 
light and enable photosynthesis, but lower air temperatures lower tree respiration), and above-average 
growth in the preceding season (large amounts of leaf litter can limit new grass growth) (Ma, Baldocchi, 
Xu, and Hehn 2007). The impacts of increased droughts, heat waves, or other disturbances may depend 
more on timing than magnitude (Craine et al. 2012, 2013). 
 
Drained wetland soils rich in organic matter can be large net CO2 sources (Nieveen, Campbell, Schipper, 
and Blair 2005; Rogiers et al. 2008), including soils from the Sacramento-San Joaquin Delta (6.6 to 11.0 t 
CO2-eq ha-1 y-1; Hatala, Detto, and Baldocchi 2012). The delta has lost approximately 136 million t C 
(499 million t CO2-eq) since it was drained in the late 19th century (Crooks 2009) with rates of 
approximately 2400 t C ha-1 between 1926 and 2006 (Deveral and Leighton 2010).  

Soil	  Carbon	  Fluxes	  and	  Possible	  Drivers	  

Many rangelands in California (Chou et al. 2008; Koteen, Baldocchi, and Harte 2011) and globally 
(Sanderman and Baldock 2010; Bridges and Oldeman 1999; Bai, Dent, Olsson, and Schaepman 2008; 
FAO 2011) are experiencing soil degradation, soil C losses, or both. In California, historical conversion 
from perennial to annual grasses in the 1800s has been linked to long-term soil C losses (Biswell 1956; 
D’Antonio et al. 2007; Ryals et al. 2014; Ryals et al. submitted). In a coastal grassland, soils under 
invasive annual grasses had 40 t C ha-1 (147 t CO2-eq ha-1) less in the top 50 cm than soils under perennial 
grasses, suggesting that soils can lose significant amounts of C due to this plant community change over 
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time (Koteen, Baldocchi, and Harte 2011). Soil C losses from a valley grassland averaged 5.5 t CO2-eq 
ha-1 y-1 over three years (Chou et al. 2008), and similar values were found in a three-year study that 
included a coastal and valley grassland (1.6 and 8.4 t CO2-eq ha-1 y-1, respectively; Ryals et al. submitted). 
 
Elevated atmospheric CO2 and N fertilization can also drive changes in ecosystem C dynamics (Jones and 
Donnelly 2004; Sillen and Dieleman 2012). Although both elevated CO2 and added N can increase plant 
productivity, these gains do not necessarily lead to increases in soil C (Sillen and Dielman 2012). In semi-
arid California grasslands, three years of exposure to elevated CO2 led to an increase in soil C but only in 
rapidly cycling C pools (Hungate et al. 1997). In southern California chaparral, five years of elevated CO2 
increased both soil organic and inorganic C (Treseder et al. 2003) but decreased soil organic C stability, 
leading to significant losses in this pool two years after treatments ceased (Trueman et al. 2009). 
Anthropogenic deposition of N is a growing problem in California, particularly in chaparral and coastal 
scrub shrublands (Fenn et al. 2003), where deposition rates typically range from 20 to 45 kg N ha-1 y-1 
(Meixner and Fenn 2004). In an N deposition experiment, dry-season N addition increased N in tissue and 
litter after one year, but did not increase soil C storage (Vourlitis, Zorba, Pasquini, and Mustard 2007). 
Throughout four years of N additions, C pools in the top 10 cm did not significantly change in the 
chaparral, but C in coastal scrub soils varied seasonally and declined slightly over time (Vourlitis and 
Pasquini 2009).  
 
Some researchers have suggested that there may be an upper limit to soil C storage (e.g., Six, Conant, 
Paul, and Paustian 2002; Stewart et al. 2007, 2008), but this concept remains controversial, and most 
ecosystems are well below a hypothetical maximum storage capacity. In California, many systems are 
actually losing C, and field surveys indicate that most areas are well below their potential C storage 
capacity (Silver, Ryals, and Eviner 2010). Degraded lands may have the greatest potential for soil C 
sequestration (Follett and Reed 2010). However, even productive lands can continue to sequester C at 
high rates. For example, Gulde et al. (2008) found that agricultural soils continued to sequester over 3 t 
CO2-eq ha-1 y-1, even after 30 years of annual manure application. 	  

Summary	  of	  Key	  Findings:	  Soil	  C	  and	  CO2	  Dynamics	  

 
• Current knowledge of California rangelands indicates that these systems hold a significant 

amount of soil C, that soils statewide contain a wide range of soil C, and that management is a 
key driver of soil C content.  

• California annual grasslands may be experiencing long-term C losses as a legacy of cover-type 
change. Many rangelands in California are experiencing widespread changes in plant cover that 
affect soil C pools (i.e., shifts from perennial to annual grasslands, annual grass invasion of 
shrublands, shrub encroachment in grasslands), and such transitions may be enhanced with 
climate change. Management impacts must be measured relative to baseline annual changes in 
soil C. 

• Changes to the frequency, intensity, and timing of rainfall events are likely, and the consequences 
for soil C are highly uncertain. Altered rainfall patterns could potentially result in soil C losses, 
particularly in annual grasslands, where the majority of plants die in late spring or early summer 
and cannot take advantage of late or early season rain for C fixation and growth. More research is 
needed to understand the potentially changing baseline in soil C throughout California rangelands, 
which may have implications for opportunities to sequester soil C.  

• Long-term research sites have been critical to identifying much of the existing knowledge on soil 
C pools and CO2 fluxes under various environmental and management conditions, yet such sites 
are sparse and not well-replicated across California’s diverse rangelands. More long-term 
research sites are needed to identify management strategies that enhance the C sink of rangelands 
under current and future climate scenarios. 
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Methane	  and	  Nitrous	  Oxide	  Fluxes	  from	  Rangelands	  

Methane (CH4) has a global warming potential 72 times that of CO2 over a 20-year timeframe and is 25 
times more potent than CO2 on a mass basis over 100 years (Solomon et al. 2007). Measurements of CH4 
fluxes in rangelands are relatively few, but rangelands are typically a net sink (Le Mer and Roger 2001); 
uptake averages -0.05 t CO2-eq ha-1 y-1 but is up to -0.12 t CO2-eq ha-1 y-1 in coarser-textured soils (Del 
Grosso et al. 2000). Overall, the sink capacity of grasslands tends to be higher than that of cultivated 
lands but lower than that of forests (Le Mer and Roger 2001; Aronson and Helliker 2010). When soils are 
saturated, rangelands can be a net source of CH4, thus the highest uptake rates are likely at intermediate 
moisture levels (Dijkstra, Morgan, Follett, and LeCain 2013). Nitrogen fertilization can stimulate CH4 
uptake at low rates (<100 kg N ha-1), but higher N addition can reduce the sink strength; inhibition of the 
CH4 sink with N uptake appears to be greater in managed and previously fertilized soils (Aronson and 
Helliker 2010). In California, coastal and valley annual grasslands were net CH4 sinks (-0.02±0.01 and -
0.03±0.01 t CO2-eq ha-1 y-1, respectively; Ryals and Silver 2013). Peatland soils tend to be a net source of 
CH4 (Le Mer and Roger 2001), and recent measurements at the Bay Delta suggested net emissions rates 
of 1.1 t CO2-eq ha−1 y−1 (Hatala, Detto, and Baldocchi 2012), due primarily to emissions from flooded 
drainage ditches and saturated regions of soils (Teh et al. 2011).  
 
Nitrous oxide (N2O) is approximately 289 times more powerful a greenhouse gas than CO2 on a mass 
basis over 20 years and 298 times more potent over 100 years (Solomon et al. 2007). Soil N2O emissions 
occur both directly (through nitrification and denitrification) and indirectly (via volatilization and 
redeposition or leaching and runoff and subsequent nitrification or denitrification) (De Klein et al. 2006). 
High temporal and spatial variability in combination with small N2O concentrations make it difficult to 
quantify annual fluxes and to compare environmental and management effects (Bouwman, Boumans, and 
Batjes 2002; Desjardins et al. 2010). Key drivers of N2O fluxes include substrate supply (N additions and 
mineralizable organic N in soils), soil moisture, and temperature (Skiba and Smith 2000). Labile C 
concentrations also affect N2O fluxes as a requirement for denitrification (Rochette et al. 2010). Nitrous 
oxide emissions are stimulated by rainfall (Fierer and Schimel 2002; Groffman et al. 2000), but N2O 
consumption by denitrifiers in mesic environments can either substantially reduce net N2O emissions or 
lead to a small N2O sink (Dijkstra, Morgan, Follett, and LeCain 2013; Chapuis-Lardy et al. 2007).  
A global analysis of N2O emissions using field observations and a modeling approach found that 
rangelands emit N2O at low, but non-negligible, rates (Zhuang, Lu, and Chen 2012). Savannas were the 
greatest emitters (0.25 t CO2-eq ha-1 y-1), followed by woody savannas (0.19 t CO2-eq ha-1 y-1), closed 
shrublands (0.12 t CO2-eq ha-1 y-1), grasslands (0.10 t CO2-eq ha-1 y-1), and open shrublands (0.08 t CO2-eq 
ha-1 y-1). Valley and coastal annual grasslands from north central California emitted approximately 0.02 ± 
0.02 and 0.17 ± 0.07 t CO2-eq ha-1 y-1, respectively (Ryals and Silver 2013). A savanna in southern 
California had no significant N2O flux during 180 days of measurements (Anderson and Poth 1989). 
Laboratory and short-term experiments with annual grassland soils showed strong pulses of N2O 
following wet-up events (Davidson 1992; Ryals and Silver 2013). Nitrogen fertilization of annual 
grasslands increased N2O emission following wet-up events, but elevated atmospheric CO2 did not 
(Hungate et al. 1997). Nitrification and denitrification were both affected by several global change drivers 
(Barnard et al. 2006), and experimentally increased precipitation significantly increased N2O fluxes, 
especially in combination with N additions and temperature increases (Brown et al. 2012) 

Summary	  of	  Key	  Findings:	  Soil	  CH4	  and	  N2O	  Dynamics	  

 
• Rangelands are typically a net sink for CH4, with the exception of drained peatland pastures, 

which are a source of CH4 emissions. Management practices that lead to soil compaction or 
increased soil moisture, or that involve N fertilization, can reduce uptake rates or increase net 
emissions.  



13	  
	  

• Existing datasets indicate that rangelands are typically a small source of N2O emissions and that 
these emissions tend to increase with N additions, moisture pulses, and temperature increases. 
High-frequency measurements are particularly crucial for capturing N2O emissions, which often 
occur in pulses following rainfall or management events. 

• Long-term, frequent, and well-replicated measurements of N2O and CH4 emissions from 
rangeland soils are critical to quantifying the net GHG emissions or sinks from these systems 
under changing environmental or management conditions. Such datasets remain scarce, 
particularly in California.  

RANGELAND	  MANAGEMENT:	  STRATEGIES	  AND	  IMPACTS	  

 Rangeland management activities directly affect aboveground and belowground net primary productivity 
(NPP), litter accumulation, and nutrient cycling, all of which can affect soil GHG emission and C storage 
(Figure 2). Significant opportunities exist for increasing soil C storage through land management 
practices across a wide range of soil textures, climates, and hydrologic conditions (Smith 2008; Gilmanov 
et al. 2010; Ryals and Silver 2013; DeLonge, Ryals, and Silver 2013; Morgan et al. 2010; Schumen, 
Janzen, and Herrick 2002; Lal, Follett, Stewart, and Kimble 2007; Ogle, Conant, and Paustian 2004; 
Conant, Paustian, and Elliott 2001; Derner and Schuman 2007). The most effective management 
approaches are likely to be adaptive, changing as needed in response to changes on the landscape. This 
study reviews the following management approaches: grazing (physical and biological effects, grazer 
species), fire (suppression, planned burns), soil amendments (commercial fertilizers, manure, compost, 
organic matter), cultivation (mowing, irrigation, aeration and tillage), and plant community composition 
(species removal, species introduction). 

Grazing	  

The effects of grazing on rangeland productivity, soil C content, and GHG emission are variable and 
depend on local climate, soil, topography, plant community, and grazing timing and intensity (Huntsinger, 
Bartolome, and D’Antonio 2007; Jackson and Bartolome 2007). In general, the animals themselves 
(particularly cattle) are the greatest sources of greenhouse gases from rangelands (e.g., Beauchemin et al. 
2010; Eagle and Olander 2012; Stackhouse-Lawson, Rotz, Oltjen, and Mitloehner 2012). This study 
focuses primarily on emissions directly or indirectly from rangelands. Very little of the research on 
grazing management has occurred in California. Also, much of the existing research is limited by lack of 
replication, co-variation with other important factors (such as soil type), and short duration (Trimble and 
Mendel 1995). Another common limitation of published studies is the comparison of ungrazed land with 
overgrazed areas, ungrazed areas, or areas managed at only one grazing intensity, which fails to elucidate 
an optimum grazing intensity. 
 
Grazing can compact or otherwise physically disturb soils, particularly when animal densities are high for 
prolonged periods and when soils are saturated (Greenwood and McKenzie 2001). Compaction generally 
decreases plant growth and thus C uptake from the atmosphere. It can also affect the soil hydrologic cycle 
by decreasing infiltration rates, lowering soil aeration, and altering the composition and diversity of soil 
biota (Schon, Mackay, and Minor 2012), all of which promote CH4 and N2O production (Reed and 
Petersen 1961; Asner et al. 2004). Soils vary in their degree of susceptibility to compaction and other 
factors, such as burrowing animals or freeze-thaw cycles, which can counteract compaction (Abdel-
Magid, Trlica, and Hart 1987). Trampling by grazing animals can also destroy surface soil structure, 
disturb surface crusts, and create microtopography (Trimble and Mendel 1995), which can increase soil C 
losses through wind and water erosion. Increased runoff can enhance erosion and lead to the physical 
removal of C from the ecosystem, particularly in non-forested rangelands (Trimble and Mendel 1995).  
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Grazing directly affects the structure and function of plant communities through selective plant removal 
(Huntsinger, Bartolome, and D’Antonio 2007), defoliation, and changing the amount and composition of 
residual biomass (Bartolome, Stroud, and Heady 1980; Allred, Fuhlendorf, Smeins, and Taylor 2012; 
Ingram et al. 2008; Rook et al. 2004). The amount of defoliation also affects subsequent forage 
production by changing light competition (Collins et al. 1998) and residual biomass (e.g., Bartolome, 
Stroud, and Heady 1980; Phelan, Casey, and Humphreys 2013). Soil moisture decreases and temperature 
increases with removal of vegetation (Asner et al. 2004; Bryant et al. 1990; Bremer, Auen, Ham, and 
Owensby 2001), which can result in more decomposition at the soil surface and less transfer of plant litter 
into the soil organic matter pool. Finally, grazers redistribute nutrients through their excrement. Dung and 
urine patches concentrate nutrients (Hoeft, Steude, Wrage, and Veldkamp 2012) and are hotspots of 
organic matter deposition, with impacts on plant community composition and growth.  
 
Several studies have found that grazing has no negative impact on soil C pools (Dahlgren, Singer, and 
Huang 1997; Gill 2007; Silver et al. in prep) or that it can be an integral component of healthy and 
productive rangelands (reviewed by Milchunas and Lauenroth 1993). Residual biomass is one of the 
strongest controls on rangeland productivity (Bartolome, Stroud, and Heady 1980), and thus carefully 
managed grazing can stimulate plant growth or reverse rangeland degradation (Dostalek and Frantik 
2008). Global models of grassland soil C under different levels of grazing suggest that decreasing grazing 
intensity from “extreme” or “strong” to “moderate” can shift grassland soils from net sources of C to the 
atmosphere to net C sinks (Conant and Paustian 2002). Potential C sequestration rates from improved 
grazing practices are highly uncertain. A few studies have suggested that rates of up to 0.6 to 1.3 t CO2-eq 
ha-1 y-1 may be possible (reviewed by Eagle and Olander 2012; Conant and Paustian 2002; Conant, 
Paustian, and Elliott 2001; Follett, Kimble and Lal 2001), while others have reported lower ranges (i.e., 
0.3-1.1 t CO2-eq ha-1 y-1; Derner and Schuman 2007). However, studies are scarce and some research has 
reported losses of up to 1 t CO2-eq ha-1 y-1 due to changed grazing management (reviewed by Eagle and 
Olander 2012). If achievable, soil C sequestration at rates of between 0.3-1.3 t CO2-eq ha-1 y-1 on 5% of 
California’s rangelands through improved grazing could amount to a mitigation potential of 0.3 to 1.5 
million t CO2-eq y-1. More research is needed to accurately predict the mitigation potential and scalability 
of this practice.  
 
Livestock species also affects soil C and soil GHG emissions due to differences in animal size and 
behavior, manure production and composition, enteric fermentation production, and grazing preferences 
(Jackson and Bartolome 2007; Hoeft, Steude, Wrage, and Veldkamp 2012).  Cattle exert enormous 
pressure on the soil surface and prefer riparian areas to uplands, which can erode stream banks and lead to 
local soil C losses (Trimble and Mendel 1995). Goats are better browsers than sheep and cattle and can 
consume relatively more shrubs (Rogosic, Pfister, Provenza, and Grbesa 2006; Salem, Salem, El-Adawy, 
and Robinson 2006; Alonso-Diaz, Torres-Acosta, Sandoval-Castro, and Hoste 2010), affecting plant 
communities and related C stocks (discussed below). Horses also increase soil compaction and alter plant 
community composition (Beever, Tausch, and Brussard 2003). Breeds within all species can exhibit 
different behaviors and impacts, thus animals may be selected or bred for traits that minimize GHG 
emissions (Estell et al. 2012). 
 
Most rangelands in California are grazed, thus grazing management has a large potential to sequester C 
and minimize GHG emissions. However, existing research is limited, particularly in California, and 
results are highly uncertain. Long-term, well-replicated research studies are needed to identify best 
grazing management practices. 

Fire	  

California rangelands, like most rangelands, have a long history of natural (lightning-induced) and 
anthropogenic fire (Pyne, Andrews, and Laven 1996; Fuhlendorf et al. 2012). Native Americans used fire 
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to manage rangelands beginning about 10,000 years ago and continuing until the fire suppression efforts 
of the late 19th century (Reiner 2007). California chaparral and coastal scrub are prone to fire and 
typically burn every few decades (Keeley 2002; Minnich and Bahre 1995). Prescribed fires have been 
used as a management tool to clear aboveground biomass, control woody biomass (Bond and Keeley 
2005), maintain native species and biodiversity (Anderson 2006; Fuhlendorf, Engle, Kerby, and Hamilton 
2009; Reinkensmeyer, Miller, Anthony, and Marr 2007), and add C and N to the soil as charcoal (Collins 
et al. 1998; Knicker 2007; Reiner 2007 and references therein; Bremer and Ham 2010). For a variety of 
reasons, approximately 60,000 ha of wildlands are annually treated with prescribed burning; increasing 
risks of wildfires means that this treated land area is projected to grow 
(http://www.arb.ca.gov/smp/progdev/pubeduc/pbfs.pdf). 
 
Greenhouse gas emissions from the combustion of vegetation are significant (Simpson et al. 2006), but 
measurements from temperate rangelands are scarce (Urbanski 2013; Yokelson et al. 2013). Although the 
C released as CO2 is of recent origin and likely to be reabsorbed during regrowth, emissions of numerous 
other aerosols and gases contribute to global warming (Smith et al. 2008; Simpson, Rowland, Meinardi, 
and Blake 2006). Recent work suggests emissions factors for rangelands of approximately 0.06 t CO2-eq 
t-1 dry biomass for CH4 and 0.09 t CO2-eq t-1 dry biomass for N2O  (Urbanski, Salmon, Nordgren, and 
Hao 2009). However, these values are highly uncertain and vary substantially depending on fire type. 
Using estimates of dry biomass of some rangeland types in California and including CH4 and N2O only, 
these emissions factors can be scaled to an area basis. Annual grasslands with 0.5−2.5 t standing biomass 
ha-1 (Jackson and Bartolome 2007) could produce up to 0.1-0.4 t CO2-eq ha-1 from a burning event. 
Southern California chaparral, with 16−52 t biomass ha-1 (Hardy, Conard, Regelbrugge, and Teesdale 
1996), could produce up to 2.5−7.8 t CO2-eq ha-1 from a burn event. Although CO2 emissions from fires 
are generally not considered to contribute to global warming (Smith et al. 2008), fires can affect 
ecosystem C stocks in the short-term during the recovery period or in the long-term if the plant 
community changes. In a tallgrass prairie system, CO2 emissions from fire led to a net loss of C over 2 
years of measurements despite increases in aboveground NPP (Bremer and Ham 2010). Fire combusts 
near-surface soil organic matter through oxidation (Knicker 2007). Biochar, the residue from incomplete 
combustion can be resistant to decomposition in some soils, increasing C in stable C pools in some (Rice 
and Owensby 2001) but not all cases (Knicker 2007; Suyker and Verma 2001, but see Schmidt et al. 
2011).  
 
Indirect effects of fire on soil organic matter and GHG emission are related to changes in nutrient cycling 
and plant composition. Fire may favor perennials in systems where annual grass seeds are fire intolerant 
(Reiner 2007). Fire that is too frequent can limit NPP due to incomplete recovery between disturbances 
and the volatile loss of C and N that would otherwise be incorporated into the soil (Reiner 2007; Cook et 
al. 2010). The volatile loss of N may promote native species in grasslands affected by high N deposition 
(Reiner 2007). However, controlled burns were ineffective in promoting natives and caused numerous 
detrimental effects in a California coastal scrub ecosystem (Meixner et al. 2006). One of the challenges in 
managing rangeland fire is the need to address multiple objectives, including minimizing GHG emissions, 
promoting biodiversity, controlling invasive plants, protecting human infrastructure and life, abating 
woodland encroachment, and increasing ecosystem productivity.  
 
Fire is often used in rangelands to control aboveground biomass and plant community composition, 
which can indirectly affect soil C stocks. Fires also emit CH4, N2O, and other greenhouse gases in 
amounts that are poorly characterized due to lack of research. Management approaches using fire should 
consider both the long-term impacts on soil C as well as GHG emissions during burning. 
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Soil	  Amendments	  

Soil amendments can be added to rangelands to increase NPP or to alter soil nutrient stocks and dynamics. 
In 2007, 261,145 ha of California’s total land area received manure; an additional 59,000 ha of 
pastureland and rangeland received commercial fertilizers, lime, and other soil conditioners (representing 
only 2.2% of the total agricultural acreage treated; USDA 2007). Nitrogen limitation is common in many 
rangelands and is likely to be important in California (Haubensak and D’Antonio 2011). Thus, 
amendments rich in N often stimulate NPP (Harpole, Goldstein, and Aicher 2007; Harpole, Potts, and 
Suding 2007; Derner and Schuman 2007). Fertilization can also increase soil C sequestration, with 
reported rates ranging from 0.4 to 5.9 t CO2-eq ha-1 y-1 (Eagle and Olander 2012). Improved efficiency in 
the use of nutrients (mainly N, but also P) on grazing lands can minimize direct and indirect GHG 
emissions from soils and animal manure, fertilizer production and application, and feed cultivation (Bolan 
et al. 2004). Organic amendments need to be tested and monitored, because they can contain metals, 
metalloids, and other toxins that could contaminate soils if added in large quantities or in frequent 
applications (Park et al. 2011). However, improvements in wastewater treatment technologies and in feed 
utilization in animal industries are decreasing contamination in organic waste materials to the point that 
these materials can often even be used to remediate contaminated soils (Park et al. 2011).  
 
Organic matter additions can increase both NPP and soil C storage in grasslands (Paustian, Collins, and 
Paul 1997; Conant, Paustian, and Elliott 2011; Lal 2004a,b; Smith et al. 2008; Cabrera et al. 2009; Ryals 
and Silver 2013; Albaladejo et al. 2008; Eagle and Olander 2012). Organic amendments also increase soil 
fertility, soil water-holding capacity, and drought resistance (Hudson 1994; Diacono and Montemurro 
2011). The trend in animal agriculture toward production in confinement facilities is resulting in the 
localized concentration of manure in excess of agricultural soil nutrient requirements (Kellogg, Lander, 
Moffitt, and Gollehon 2000). Application of this manure to rangelands offers a means of redistributing the 
nutrients, decreasing nutrient pollution, and increasing forage production (Kellogg, Lander, Moffitt, and 
Gollehon 2000). Composted or anaerobic digestate of organic wastes, such as dairy slurry, urban 
wastewater, and food processing waste, can be used as an organic matter addition to soils without loss in 
productivity (Walsh et al. 2012) and is likely to reduce net GHG emissions (DeLonge, Ryals, and Silver 
2013). 
 
Compost may be particularly effective at sequestering C (Ryals and Silver 2013; Fronning, Thelen, and 
Min 2008). In California coastal and valley grasslands, compost C directly increased ecosystem C by 52 t 
CO2-eq ha-1 and also enhanced NPP by 2.6 and 5.7 t CO2-eq ha-1 y-1 , respectively, during three years 
following application; the consequential C sequestration rate was estimated to be 0.6 to 4.1 t CO2-eq ha-1 
y-1 (Ryals and Silver 2013). Modeling using DayCent indicated that these effects could persist for decades 
(Ryals et al. submitted). Scaled up to 5% of California’s rangeland, such sequestration rates could 
potentially mitigate 0.7 to 4.7 million t CO2-eq y-1. Diversion of waste stream materials for compost 
production can add climate change mitigation value to this management approach. A life-cycle 
assessment (LCA) case study for this practice based on compost produced from materials diverted from 
high-emission waste systems (liquid manure storage and landfills) indicated that 23 t CO2-eq ha-1 could be 
saved within three years following a one-time application of compost at 250 kg N ha-1 (DeLonge, Ryals, 
and Silver 2013). The LCA assumed that increased forage production led to reduced demand for 
commercial feed as well as a modest annual increase in soil C storage, but most mitigation potential in 
this case was from improvements in waste management; emissions from all phases of the life cycle were 
considered, including transportation and application. An uncertainty analysis using a broader range of 
variables suggested a net mitigation potential of 4.3 ± 0.8 t CO2-eq ha-1 would be likely (DeLonge, Ryals, 
and Silver 2013). Using the more conservative estimates from the uncertainty analysis, 4.9 million t CO2-
eq could be mitigated annually if this practice was applied to 1.1 million ha (5%) of California’s 
rangeland each year. Research identifying the locations and availability of organic waste and improving 
emissions estimates from the composting process is needed to improve estimates of the mitigation 
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potential of this management approach. Field research on diverse rangelands, particularly more arid 
systems, is required to evaluate the impacts of scaling up this approach.  
  
The impacts of soil amendments on soil C and soil GHG emissions depend on the physical and chemical 
properties of the amendments. Mineral fertilizers can enhance NPP but may also inhibit CH4 oxidation 
and thus reduce CH4 uptake by up to 75% (Del Grosso et al. 2000), although not in all cases (Bodelier and 
Laanbroek 2004). Mineral N fertilizers often increase N2O emissions (Mosier et al. 1991). Additionally, 
greenhouse gases are emitted during the production of inorganic N fertilizers, at rates dependent on the N 
form and the production process. Typical emissions rates for ammonium nitrate production are 3.0–7.1 t 
CO2-eq t-1 N and for urea are 0.9–4.0 t CO2-eq t-1 N (Wood and Cowie 2004). Organic mulches (straw, 
bark) have been used to reduce N availability in soils with high rates of N deposition in southern 
California; this management practice has been applied in disturbed coastal scrub with the goal of 
preventing further annual grass invasion (Allen and Zinc 1998). The mulch increased microbial activity, 
immobilized N, improved the survival rate and productivity of planted native perennials, and led to 
increased soil organic matter in the amended plots after one year (Allen and Zinc 1998).  
 
Nitrous oxide emissions tend to be elevated in grasslands that receive large amounts of manure or N 
fertilizer additions; estimates suggest that 2.5% of synthetic-N fertilizer and 2.0% of manure-N is 
ultimately converted to N2O globally (Davidson 2009; Mosier et al. 1996; Bolan et al. 2004). Depending 
on the form added, organic matter applications may increase GHG emissions from rangeland, particularly 
of N2O (DeLonge and Silver in prep; Owen and Silver in prep). However, research suggests that 
emissions may be minimized by using composted materials, which act as slower-release fertilizers (Ryals 
and Silver 2013; Dalal, Gibson, and Menzies 2009; Dalal, Gibson, Allen, and Menzies 2010; Paul, 
Beauchamp, Zhang, and Zhang1993; Eghball 2000; Sikora and Szmidt 2001). Compost complexes N; 
thus, it is an organically-bound, slow-release form of N as well as a source of recalcitrant C potentially 
unavailable to soil denitrifiers. This property of compost may increase N immobilization rates, slow N 
mineralization rates, and decrease N2O fluxes (Huang et al. 2004), while simultaneously improving long-
term soil fertility by building soil organic matter. Enhanced-efficiency N fertilizers (EENFs) also have the 
potential to decrease GHG emissions relative to conventional fertilizers (Halvorson et al. 2013; Akiyama 
et al. 2010). These EENFs include stabilized EENFs (containing nitrification, urease inhibitors, or both), 
slow-release EENFS (which contain slowly released N components with variable release rates), and 
controlled-release EENFs (which have more predictable release rates) (Halvorson et al. 2013). EENFs 
have been found to reduce N2O in cropping systems by 14% to 61% relative to commonly used synthetic 
N fertilizers (Halvorson et al. 2013). Efficient soil amendments that minimize GHG emissions while 
enhancing NPP can help to mitigate climate change.  
 
Soil amendments can improve rangeland productivity and sequester soil C, while providing numerous co-
benefits. Thus this approach is promising and a high research priority. Slow-release and high-efficiency 
fertilizers can maximize benefits while minimizing soil N2O losses and transportation costs. When 
composts are produced from materials diverted from high-emission waste streams, an additional benefit 
is reductions in emissions from the waste sector. This approach must be considered in a full life-cycle 
assessment context. 

Cultivation	  

Mowing	  

Mechanical mowing can have similar impacts as grazing events on soil C and GHG emissions, because 
both reduce biomass. Like overgrazing, equipment used for mowing can compact soils. Energy used for 
mowing leads to GHG emissions. Mowing events can reduce C uptake (Barcza et al. 2003), but they did 
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not explain differences in annual NEE over six years in a montane grassland (Wohlfahrt et al. 2008). At 
subalpine grassland sites, grass cutting reduced C uptake by approximately 50%, and the cut meadow was 
a net source of C during the growing season (2.9 t CO2-eq ha-1), whereas a neighboring undisturbed 
meadow was a C sink (-4.8 t CO2-eq ha-1) (Rogiers, Eugster, Furger, and Siegwolf 2005). In mowing 
studies, biomass has often been removed from the site and decomposed or consumed elsewhere; 
emissions from the decomposition of this biomass have not usually been quantified (Barcza et al. 2003). 
In some cases, mowing alters the plant community composition; this change may have a greater impact 
on net C exchange than the loss of biomass. For example, when pepperweed was mowed from a drained 
peatland pasture in California, reduced energy reflectance and increased photosynthetic capacity led to a 
net C sink relative to other periods (-6.2 vs. -1.1 to 4.8 t CO2-eq ha-1 period-1; Sonnentag et al. 2011).  

Aeration	  and	  Tillage	  

Aeration and tillage are management strategies that mechanically agitate soils and can counteract soil 
compaction. Aeration can reduce woody plant cover while promoting grasses (Fulbright and Ortega-
Santos 2013). Disturbances associated with aeration and tillage can sometimes enable exotic grass 
invasion (Ayala-A et al. 2012). Aeration may promote NPP in some cases, but it also disrupts surface 
soils and breaks up soil aggregates that protect soil C, promoting soil C losses as well as erosion 
(Gebhardt, Daniel, Schweizer, and Allmaras 1985).  
 
Tillage is applied primarily to croplands, where it has been well studied (Eagle et al. 2010), but it is also 
occasionally used on rangeland systems, where it has been less well studied. Conventional plowing 
results in significant losses of soil organic C across agricultural lands (Reicosky 2003; Lal 1993). Plowing 
also requires fossil fuel consumption (Philips et al. 1980). Research has suggested that less intensive 
methods, such as conservation tillage, can minimize C losses relative to conventional plowing (West and 
Post 2002), although gains in surface soils may be offset by losses deeper in the soil profile (Baker, 
Ochsner, Venterea, and Griffis 2007). In California, mechanical disturbances may have led to permanent 
conversion of some coastal scrub to annual grasslands; this conversion is possibly related to the disruption 
of arbuscular mycorrhizal fungi (Engelberg et al. 2013). 

Irrigation	  	  

Rangeland in California is largely not irrigated. In 2008, irrigation occurred on 119,655 ha (6%) of 
cropland used for pasture or grazing and 29,028 ha (3%) of pastureland and rangeland (USDA 2008). 
These values are somewhat different than those for the entire United States, where less than 2% of 
pastureland and rangeland were irrigated, but more than 15% of cropland used only for pasture or grazing 
were irrigated (USDA 2008). Irrigation has been used to increase NPP in drylands, but few studies have 
investigated the net ecosystem C impacts (Eagle and Olander 2012). Irrigation led to an increase in soil C 
pools of 0.7 t CO2-eq ha-1 y-1 in Australian rangelands (Rixon 1966) and an increase of approximately 1.8 
t CO2-eq ha-1 y-1 in Idaho, but not in a New Zealand study (Houlbrooke, Littlejohn, Morton, and Paton 
2008). Although irrigation is desirable for forage production, it can decrease soil C storage by increasing 
decomposition rates relative to C inputs (Kelliher, Condron, Cook, and Black 2012) and increase N2O 
emissions (Chou et al. 2008). The timing of irrigation is particularly important to GHG production. 
Irrigation can lead to nutrient losses through runoff and leaching when poorly timed (Bush and Austin 
2001). With climate change, more irrigation may be needed to offset soil moisture deficits associated with 
increasing frequency and severity of drought (Mote, Hamlet, Clark, and Lettenmaier 2005) and higher 
temperatures (Cayan et al. 2008).  
 
Mowing, aeration, and tillage disturb rangeland soils, typically leading to soil C losses. Irrigation can 
increase productivity and therefore soil C, but water shortages limit the practical application of this 
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approach. All of these approaches also require significant energy to implement, minimizing the net 
mitigation potential.  

Plant	  Community	  Composition	  

Management of plant community composition includes seeding, invasive plant control, woody plant 
management, and plant breeding. On pasturelands, ranchers or land managers may spread seed to increase 
NPP and the nutritional value of forage (Abberton et al. 2008). Increases in productivity generally result 
in increased soil C content (Conant, Paustian, and Elliott 2001). If legume seeds are added, the increase in 
N fixation can stimulate plant productivity and soil C sequestration (Watson 1963). For example, 
interseeding mixed-grass rangelands in the Great Plains with a legume led to an increase in NPP and a 
corresponding increase in soil organic C by 4% just three years after interseeding and by 17% after 36 
years (Mortenson et al. 2004, 2005). Legumes can also decrease the need for N fertilizers, reducing the 
loss of excess N to the atmosphere as N2O or to groundwater (Abberton et al. 2008).  
 
In California, the replacement of native perennial with exotic annual grasslands may decrease soil C 
storage (Koteen, Baldocchi, and Harte 2011) and increase rates of N cycling and associated losses (Parker 
and Schimel 2010).  Grassland soil aggregates were less stable under non-native plants than native ones, 
possibly due to differences in roots or microbial community (Duchicela et al. 2012), which could decrease 
the mean residence time of C and N in soils. Plant composition management may be challenging in some 
areas of California where high N deposition is driving invasive plant expansion, in addition to increasing 
soil N2O emissions (Fenn et al. 2003). The critical deposition load at which invasive species are favored 
in these environments is between 3–8 kg N ha-1 y-1, and 10% of California’s land area already receives 
>10 kg N ha-1 y-1 (Fenn et al. 2011, 2010). Plant management through burning emits greenhouse gases, as 
described above (Urbanski 2013). As an alternative to burning, weeding has been proposed as a means of 
controlling invasive plants (MacDougall and Turkington 2007), but it is cost-prohibitive for large areas, 
and the effects on ecosystem C remain uncertain for most rangelands.  
 
Woody plant encroachment, the replacement of rangeland grasses with shrubs or trees, is particularly 
common in arid and semi-arid ecosystems (Van Auken 2009; Asner et al. 2004) due to climatic variations, 
overgrazing, changing fire regimes, and increased atmospheric CO2 (Archer, Schimel, and Holland 1995; 
Barger et al. 2011; Roques, O’Connor, and Watkinson 2001; Gao and Reynolds 2003; Grice 2006; 
Morgan et al. 2007; Van Auken 2009). The growth of woody plants may result in a net ecosystem gain or 
loss of C and N, depending on temperature and precipitation (Jobbágy and Jackson 2000; Jackson et al. 
2002; Barger et al. 2011). With woody encroachment, soil organic C may decrease (Jobbágy and Jackson 
2000), while aboveground C stocks increase (Asner et al. 2004). As a result of woody encroachment, 
rangeland in the San Joaquin River Valley and Mojave Desert (where mean annual precipitation is less 
than 336 mm) would likely experience reduced aboveground NPP, whereas other rangeland in California 
would likely have increased aboveground NPP (Barger et al. 2011).  
 
California oak woodlands represent a unique case of woody plant growth in rangelands. Oak woodlands, 
with an annual grass understory, are the natural cover for the hills surrounding the Central Valley but are 
under threat from development and unknown factors limiting oak seedling success (Reiner and Craig 
2011). Oak removal was once recommended as a means to improve rangelands by reducing competition 
for moisture (Lewis 1968), but this potential benefit was short-lived (Kay 1987). Research has shown that 
soils under oak understories store more C and N and exhibit more favorable soil conditions than 
deforested areas (Dahlgren, Singer, and Huang 1997). Although forage production is similar in oak 
savannas and open grasslands, soil organic N and C could be lost following oak removal (Jackson, 
Strauss, Firestone, and Bartolome 1990). In areas still populated by oaks, grazing may decrease oak 
seedling recruitment; however, that effect is difficult to separate from the effects of interannual 
precipitation variation and competition from annual grasses (Reiner and Craig 2011).  
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Targeted plant breeding or species selection has been proposed to increase the sustainability of rangeland-
based industries. Breeding can be used to improve the sustainability of agriculture (as reviewed by 
Humphreys et al. 2006). This practice could decrease the need for N fertilizers by increasing N-use 
efficiency or soil C sequestration, or by improving digestibility and decreasing enteric emissions 
(Abberton et al. 2008, and references therein). Forage composition is well known to affect enteric 
emission; a variety of feeding strategies are being investigated to reduce CH4 emissions (Beauchemin et 
al. 2010). Changing protein and energy content of forage may increase N-use efficiency in the rumen and 
decrease N excretion and subsequent conversion into N2O (Humphreys et al. 2006). Shrubs might also be 
bred to be more palatable to grazers by reducing secondary metabolites, enabling increased grazing in 
areas experiencing woody plant encroachment (Estell et al. 2012). Secondary or unexpected consequences 
of plant introductions can have deleterious effects on ecosystem C storage, hydrology, and biodiversity; 
thus, research is needed before such activities could be recommended in practice. 
 
Plant communities affect soil C and GHG emission on rangelands; thus, plant community management 
may contribute to climate change mitigation. Opportunities for such management are closely related to 
fire and grazing and are likely to be site-specific. Interseeding of legumes in rangelands and plant 
breeding are promising approaches that require additional research for California. 

Summary	  of	  Key	  Findings:	  Rangeland	  Management	  

 
• Grazing directly affects rangeland soils and plants, but the effects of grazing on soil C pools and 

GHG emissions are poorly understood. Improved grazing practices (i.e., lowered or managed 
grazing intensity) may increase C storage in soils. 

• Research on greenhouse gases and C exchange from grazing systems has been conducted 
primarily on annual grasslands and is sparse on other types of rangeland systems, particularly in 
more arid regions of California.  

• Soil amendments can increase nutrient availability and NPP, sequestering atmospheric CO2. 
Organic matter amendments provide numerous co-benefits. Slow-release fertilizers, such as 
compost, may facilitate C uptake for decades without additional application or maintenance. 
Amendments can have different impacts, depending on their chemical and physical properties. 
For example, increasing soil N availability can enhance the productivity and soil C stocks of 
annual grasslands, whereas immobilizing soil N may improve productivity and soil C in some 
coastal scrub ecosystems. 

• In some cases, soil amendments can promote N2O emission and reduce the CH4 uptake of 
rangelands, particularly when soils are saturated. Timing, quantity, and quality of amendments 
can minimize or eliminate these changes to GHG fluxes. 

• Compost amendments may be particularly effective at sequestering soil C while minimizing 
increased N2O emissions or decreased CH4 uptake in rangeland soils. An added benefit of 
compost is that it can be produced from manure and plant materials that typically emit large 
amounts of CH4 when stored in common waste management systems such as anaerobic lagoons 
and landfills. Thus, compost applications can reduce emissions from the waste management 
sector. 

• Mowing or mechanically harvesting plant material from pastures leads to immediate reductions in 
C uptake that do not appear to be compensated for during re-growth, leading to net reductions in 
C storage. These practices also require energy consumption for equipment operation. 

• Plowing increases soil C losses and can disrupt microbial and fungal communities, leading to 
long-term or permanent changes in the ecosystem.  
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• Irrigation can increase soil C storage and minimize losses during droughts, but increased soil 
moisture after dry periods and during the summer can enhance soil GHG emissions.  

• Plant communities play a large role in soil C and GHG emissions and are frequently in transition 
in California’s rangelands due to climate variability, fire, invasive species, and land use change. 
Species removal and introduction have a history of decreasing soil C storage in California 
rangelands. 

• Rangeland systems store more C in soils and produce fewer GHG emissions than croplands or 
urban land uses. Preventing conversion of rangelands to alternate systems can help to mitigate 
climate change. 

TOOLS	  FOR	  MANAGEMENT	  DECISIONS:	  MODELING	  AND	  REMOTE	  SENSING	  

Ecosystem and biogeochemical models are valuable tools to be used in conjunction with field research to 
predict changes in soil C pools and GHG emissions over broad spatial and temporal scales and at 
resolutions not feasible in the field. Life-cycle assessments can be used to quantify and compare the 
overall impacts of available land management options, to identify the most critical gaps in knowledge, 
and to evaluate the impacts of uncertainties. Remote sensing can be used to assess rangeland conditions 
over large spatial and temporal scales and may be useful in identifying optimal project areas and resource 
allocations. Several tools will be helpful in assessing baseline conditions and identifying and 
implementing mitigation opportunities on California’s rangelands.  

Ecosystem	  and	  Biogeochemical	  Models	  

Numerous mechanistic and empirical models have been developed to investigate rangeland NPP and 
management, but relatively few of these models include soil C or GHG emissions (see Denef et al. 2012; 
Derner, Augustine, Ascough, and Ahuja 2012). Biogeochemical models explicitly include soil C pools 
and soil trace gas emissions, and some can model their dynamics in response to different management 
conditions. The CENTURY model was first developed for grasslands and has been used to model a 
variety of ecosystems, climates, and management practices (Parton, Ojima, and Schimel 1994; Kelly et al. 
2000; Del Grosso et al. 2002; Parton, Morgan, Wang, and Del Grosso 2007). The DayCent model, a daily 
timestep version of CENTURY, accurately calculated soil C pools and GHG emissions from California 
chaparral, though improvements were needed for the effects of fire (Li et al. 2006). In this study, NPP and 
soil N fluxes exhibited high inter- and intraannual variability with large decreases in NPP and increases in 
soil gaseous N emissions for three years post-fire; soil C and N losses were smaller but lasted for decades. 
Furthermore, the modeling results suggested that increases in N deposition would lead to increased N 
leaching and gaseous emissions (Li et al. 2006). The DayCent model was also evaluated for two grazed 
annual grasslands in California: one that received compost additions and one left untreated; soil C and 
GHG fluxes were all within the range of observed values (Ryals et al. submitted). This study indicated 
that compost additions to California rangelands led to rapid increases in soil C pools and a net sink in 
greenhouse gases that lasted for decades (1.3–1.6 t CO2-eq ha-1 y-1 over the initial 10 years; Ryals et al. 
submitted). Another version of the CENTURY model, MC1, was parameterized for California; 
simulations of large-scale climate change effects on vegetation, soil C, and fire regimes in historical time 
periods compared favorably with observations (Lenihan, Bachelet, Neilson, and Drapek 2008). Research 
using this model predicted that California grasslands will expand and that fire burn area will increase, but 
the net C flux from California’s land mass was uncertain. A cooler, moister climate change scenario led to 
an annual statewide sink of 1,177 million t CO2-eq; warmer and drier scenarios led to annual emissions of 
279–473 million t CO2-eq (Lenihan, Bachelet, Neilson, and Drapek 2008).  
 
The Denitrification-Decomposition (DNDC) model is similar to the DayCent model but was designed 
specifically for agricultural ecosystems (Li 2000). Despite DNDC’s similarities to the DayCent model, 
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fewer studies have used DNDC in rangeland systems globally or in California. DayCent was found to 
reproduce N2O fluxes better than DNDC on a humid pasture (Abdalla et al. 2010). Five process-based 
ecosystem models (i.e., BEPS, Biome-BGC, CABLE, ORCHIDEE, JULES) did a poor job of predicting 
CO2 exchange over seven Mediterranean oak woodlands during droughts; they underestimated variability 
over weeks to months, overestimated variability on a yearly scale, and consistently underestimated 
ecosystem respiration during drought (Vargas et al. 2013). Drought conditions are likely to become more 
common due to climate change (Kharin, Zwiers, Zhang, and Hegerl 2007). 
 
Numerous models that have not included soil C or GHG dynamics could be leveraged to meet additional 
needs. Bioclimatic envelope models have historically been used to predict changes to plant communities 
under changing climates (Abatzoglou and Kolden 2011). These models need to be coupled with 
mechanistic models to link changes in plant communities with soil C pools and GHG emissions under 
diverse climate and disturbance regimes. Several models have been developed specifically to evaluate 
grazing (Tietjen and Jeltsch 2007; Wiegand, Wiegand, and Putz 2008; McKeon et al. 2009), though these 
models have focused primarily on forage production impacts, rather than soil C or GHG fluxes.  
 
Some needed improvements in models include designs that facilitate decision-making (considering 
tradeoffs and available resources) and explicit consideration of interactions among weather, herbivory, 
and fire (Derner et al. 2012). Additionally, models need to be able to better predict the implications of 
short- and long-term climate variability for rangeland management (Teague et al. 2009; Ebrahimi, Milotic, 
and Hoffmann 2010).  

Life-‐Cycle	  Assessments	  

Rangeland management decisions require consideration of the net impacts of changes in ecosystem C 
pools, direct rangeland emissions, and indirect emissions from management activities (Schlesinger 1999). 
Life-cycle assessments are a valuable tool to compare the relative importance of energy and material 
inputs and to assess the net effects of management on C and GHG dynamics. For example, organic matter 
amendments can sequester C in soils, increase forage production, reduce demand for energy-intensive 
imported animal feed and synthetic fertilizers, and divert materials from high-emission waste 
management facilities (e.g., landfills, anaerobic lagoons). However, producing these amendments, 
transporting them, and making subsequent dietary changes for livestock all produce GHG emissions. In 
one LCA, producing and adding organic amendments to soils led to a net GHG savings averaging 4 t 
CO2-eq ha-1, and up to 23 t CO2-eq ha-1 in one case study, due primarily to diversion of waste from high-
emission manure storage systems and landfills (DeLonge, Ryals, and Silver 2013). In comparison, 
applications of manure from liquid storage systems and synthetic N fertilizers yielded net GHG sources 
(DeLonge, Ryals, and Silver 2013).  
 
Life-cycle assessments can address the GHG impacts of a broad range of practices, such as irrigation, 
plant community management (through weed control, chemical additives, or fire), livestock and dairy 
production, manure management, and wool production. For example, energy required to pump water for 
irrigation emits approximately 0.7–2.9 t CO2-eq ha-1, offsetting potential gains in soil C from increased 
NPP, particularly in arid regions (Schlesinger 1999). Beef production LCAs have shown that large 
portions of total GHG emissions are from enteric emissions (> 50%) and manure (25%), but these studies 
have typically excluded impacts on soil C (Beauchemin et al. 2010; Stackhouse-Lawson, Rotz, Oltjen, 
and Mitloehner 2012). An LCA of milk production in California indicated that approximately 0.5–0.6 t 
CO2-eq are produced per ton milk, but this assessment did not allow for depletion or sequestration of soil 
C stocks that likely occur with different land management systems (Rotz, Montes, and Chianese 2010). 
Research on the impacts of sheep systems on greenhouse gases remains limited (Zervas and Tsiplakou 
2012). One LCA for sheep found that one ton of their meat has a GHG cost of 5 to 6 t CO2-eq (Biswas 
2010). This cost is lower than the GHG cost of beef (11 to 23 t CO2-eq t-1; Stackhouse-Lawson, Rotz, 
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Oltjen, and Mitloehner 2012), because sheep are smaller than beef cows and have lower rates of enteric 
fermentation. Wool production has been estimated at 15–17 t CO2-eq t-1 (Biswas 2010); this cost has not 
been compared to that for other fibers.  
 
One of the most complex aspects of LCAs is the treatment of land use and land cover change. In many 
cases, C storage and GHG fluxes on rangelands are excluded from analyses (Rotz, Montes, and Chianese 
2010). When included, different assumptions and treatments of land use can lead to conflicting 
conclusions about the GHG ramifications of products or production systems. For example, a study of milk 
production showed that compared with conventional systems, organic milk systems might reduce 
emissions by 40% or increase emissions by up to 50%, depending on the representation of land use 
change (Flysjo, Cederberg, Henriksson, and Ledgard 2012). In theory, a full LCA would consider all 
indirect land use changes as well, though these changes can be difficult to quantify.  

Remote	  Sensing	  

Remote sensing can be used to assess current and past rangeland productivity, vegetation characteristics, 
and land management. Such information can be useful for estimating baseline rangeland productivity, 
evaluating the impacts of management changes, or identifying lands that might be most suitable for 
specific management practices. Remote sensing tools for assessing rangeland soil C and GHG dynamics 
are currently limited, but recent improvements are promising. In one study, available eddy covariance 
data from AmeriFlux was scaled up to the conterminous United States using MODIS data; the model did 
a good job of predicting NEE, including NEE of rangelands in California’s Mediterranean climate (Xiao 
et al. 2008). Another study using remote sensing showed that one index explained 49% of variance in the 
water vapor flux in California chapparal and could be useful in detecting drought conditions, when these 
rangelands are particularly prone to C loss (Claudio et al. 2006). Remote sensing and modeling were 
combined to calculate Estimated Ecosystem Performance (EEP), which can be used to detangle influences 
of weather and site potential from management-induced changes (Rigge et al. 2013). Although these 
remote sensing methods do not quantify soil C, they have been used to effectively identify overgrazed or 
degrading areas in the western United States (Rigge et al. 2013). Unmanned aerial vehicles (UAVs) also 
have a great deal of promise for quantifying vegetation cover and rangeland conditions using remote 
sensing at a variety of spatial scales, particularly over rugged or remote terrain (Rango et al. 2009). 
Applying such techniques to California may be useful in identifying rangelands where changes to 
management practices are most needed or would be most fruitful.  

KEY	  FINDINGS	  AND	  RESEARCH	  PRIORITIES	  	  

California’s rangelands are extensive; thus, even small rates of C sequestration and emissions reduction 
across these landscapes have the potential to make significant contributions to the state’s climate change 
mitigation goals. The material reviewed above highlights several avenues with considerable potential for 
mitigating GHG emissions on California rangelands. 

Key	  Findings	  

 
• A large proportion of California’s rangelands are likely to be degraded with regard to soil C pools and 

have significant potential for increased C sequestration in soils through management. Some California 
rangelands are experiencing C loss due to environmental or management factors that have led to shifts 
in vegetation; research suggests that C losses in these rangelands is likely to be at least partially 
reversible. 
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• Research suggests that organic matter additions to rangelands, particularly with composted organic 
wastes, may be a viable strategy for C sequestration in California’s Mediterranean climate. This 
management approach has the additional potential benefit of GHG mitigation in several industries, 
including dairy, livestock, crop agriculture, and waste management. 

 
• Well-managed grazing is not likely to decrease soil C pools on rangelands and could increase C 

storage. Sustainable grazing practices can increase forage per land area in the short- and long-term, 
reducing reliance on other animal feed products.  

 
• Carbon and GHG emissions in California’s rangelands are sensitive to changes in temperature, 

precipitation, management, atmospheric CO2 concentrations, and N deposition, all of which are 
occurring throughout California and are likely to persist or even intensify in the near future. These 
environmental drivers are altering baseline soil C and soil GHG dynamics, likely with implications 
for management. Monitoring shifting baselines in rangelands will be critical to identifying and 
selecting the best management opportunities.  

Research	  Priorities	  

• More research is needed to ensure that soil C stocks, net ecosystem exchange, and GHG fluxes (CH4 
and N2O) are well understood across the full range of California rangeland cover types, including 
grasslands and shrublands along elevation and precipitation gradients. Carbon sequestration, avoiding 
soil C losses, and minimizing GHG emissions can all be part of a climate change mitigation strategy. 
A more complete understanding of current C pools and GHG fluxes will facilitate state-level 
emissions inventories and emissions reduction planning. 
 

• Investment in long-term, well-replicated research sites is needed to accurately quantify baseline 
conditions on California’s rangelands and to identify opportunities for management. Long-term 
studies are of particular importance in rangeland systems. These systems experience large interannual 
rainfall variability and are highly susceptible to disturbances, particularly droughts and fires, which 
can have long-lasting effects.  
 

• Continuous measurements of GHG fluxes are required to accurately capture net annual emissions or 
sequestration. Such measurements are particularly needed for N2O, which is often emitted in short 
pulses following rain events. Eddy-covariance systems with high-frequency gas analyzers will be 
instrumental in measuring semi-continuous GHG fluxes from whole ecosystems over spatial scales of 
hundreds of meters to several kilometers. Plot-scale field experiments will be needed to quantify 
spatial heterogeneity, identify species-specific effects, and test the effects of different management 
strategies. 
 

• More research is needed on grazing management to reduce GHG emissions and increase C storage. 
The majority of California’s rangelands are grazed. Grazing practices that rehabilitate degraded soils 
and increase soil C storage are needed to help the state meet its GHG emissions reduction goals, but 
these practices must first be identified and optimized for local conditions and needs. This research 
should specifically consider soil, plant, and animal C and GHG fluxes, plant community and water 
resources, and social issues and economic analyses associated with changing grazing regimes. 
Research should be conducted at a field scale with full replication and carefully selected controls. 
Ideally, it would be conducted in Mediterranean, arid, and semi-arid bioclimatic zones to account for 
some of the important diversity of rangeland cover types in the state. Empirical research should be 
coupled with modeling studies to facilitate scenario planning and broad-scale quantification of 
outcomes. 
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• Research on the use of organic matter amendments for climate change mitigation should be expanded 

to include a broader set of rangeland types, particularly rangelands in arid and semi-arid climates, and 
a wider range of materials. Research should include well-integrated empirical and modeling studies, 
and, ideally, social science and economic analyses to ensure feasibility of management alternatives. 

 
• The interactions of grazing and fire management should be explored to determine the best 

management practices to meet the needs of livestock industries and fire control while reducing GHG 
emissions. 

 
• Opportunities for managing rangeland plant communities to sequester soil C require greater 

exploration. For example, interseeding legumes has shown strong potential for building soil C in the 
Great Plains. 

 
• Modeling studies should explicitly address the effects of management alternatives (including those 

outlined above) under changing climate scenarios. Specifically, models should explore the effects of 
drought, changes in the timing of rainfall, reduced snowpack, increased frequency or intensity of fire, 
and increased population and food demands. 
 

• Life cycle assessments (LCAs) should be conducted for all management strategies to ensure that only 
strategies with a net mitigation potential in the long term are pursued. LCAs should be parameterized 
for local conditions whenever possible and should include statistically robust uncertainty analyses. 
 

• Remote sensing, in combination with unmanned aerial vehicles, show tremendous promise as 
relatively low-cost ways to monitor rangeland conditions and plant communities, but these 
technologies require greater investment. Research is needed to develop algorithms linking remotely 
sensed data to rangeland soil C and GHG dynamics. Remote sensing should also be used to identify 
optimal locations for long-term study sites and to implement management strategies. 
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